ACS/Dreyfus Symposium on Chemistry in Support of Human Health, March 24, 2020

The Dreyfus Foundation is proud to sponsor a symposium on Chemistry in Support of Human Health, the topic of the 2019 Dreyfus Prize, at the spring national meeting of the American Chemical Society in Philadelphia on Tuesday, March 24, 2020, in room 204C of the Pennsylvania Convention Center. This symposium is also sponsored by the ACS Multidisciplinary Program Planning Group. The distinguished speakers include Robert Langer, the winner of the 2019 Dreyfus Prize.

9:00: Introduction

Session 1. Chair: Daniel Nocera, Harvard University


9:10: Susan Richardson, University of South Carolina, The Transformative Power of Chemistry: Uncovering Emerging Water Contaminants and Making Drinking Safer


9:45: David Tirrell, California Institute of Technology, Selective Proteomic Analysis of Cellular Sub-populations in Complex Biological Systems

Session 2. Chair: Louis Brus, Columbia University


10:35: Carolyn Bertozzi, Stanford University, Therapeutic Opportunities in Glycoscience


11:10: Richard Friesner, Columbia University, Computational Methods for Structure Based Drug Discovery


Session 3. Chair: Laura Kiessling, Massachusetts Institute of Technology


2:00: Chaitan Khosla, Stanford University, Chemical Analysis and Manipulation of Celiac Disease Pathogenesis


2:35: Peter Schultz, The Scripps Research Institute, Playing with the Molecules of Life 

Session 4. Chair: Matthew Tirrell, The University of Chicago


3:25: Sangeeta Bhatia, Massachusetts Institute of Technology, Tiny Technologies and Medicine


4:00: Robert Langer, Massachusetts Institute of Technology, Chemistry in Support of Human Health: Drug Delivery and Tissue Engineering

Machine Learning in the Chemical Sciences & Engineering

The Camille and Henry Dreyfus Foundation announces the establishment of a program for Machine Learning in the Chemical Sciences and Engineering. The goal of this program is to further applications of machine learning throughout the chemical sciences, thereby providing new opportunities. The deadline is April 2, 2020.

“In view of the increasing attention to and expectations for the profound impacts that artificial intelligence and data science will have on physical science and engineering, the Dreyfus Foundation plans to make strategic investments in machine learning for the chemical sciences and engineering, both to advance the field in these areas, and to help position the chemical sciences field to best avail itself of the broad agency opportunities for research support that are emerging. We are enthusiastic about the potential for machine learning to produce useful fundamental and practical insights in chemical research.” -Richard N. Zare and Matthew V. Tirrell, Camille and Henry Dreyfus Foundation, Scientific Affairs Committee of the Board of Directors.

Below are some examples of areas this program may support:

  • molecular synthesis, including mechanisms, techniques, and applications
  • theory, computation, physical properties of molecules or materials
  • rates and mechanisms of new chemical processes
  • new or improved materials and materials applications
  • postdoctoral support for collaborations that combine chemical science research with machine learning expertise
  • collaborative sabbaticals, extended visits, and meetings
  • education, e.g., new courses, seminar series, MOOCs, …
  • public libraries of chemistry and chemical engineering data for use in machine learning

Note that proposals are not restricted to the areas described above.

Additional details are available here.

Robert Langer, 2019 Dreyfus Prize Winner

Robert S. Langer, Institute Professor at Massachusetts Institute of Technology, will receive the 2019 Dreyfus Prize in the Chemical Sciences on Thursday, September 26, at 5:00 p.m. The ceremony, which will feature a talk by Langer on Chemistry in Support of Human Health, is open to the public and will be held in Room 26-100 at MIT. A live stream of the event will be available at https://cheme.mit.edu/dreyfus-prize-webcast/

Langer is an icon at the intersection of polymer chemistry and medicine. His discoveries in drug delivery and tissue engineering have impacted the lives of hundreds of millions of people worldwide. He is the most highly cited engineer in the world and has been called the “Edison of Medicine” by Forbes magazine for his prolific inventions in biotechnology and biomedicine.

Langer’s work is marked by an ambition to improve human health and medical outcomes. As a young chemical engineer, he forsook a career in industry to pioneer the field of biotechnology. His creation of controlled release drug delivery systems revolutionized medical therapies for a wide variety of diseases and disorders, including brain and prostate cancer, macular degeneration, schizophrenia and other mental health disorders, and opioid addition. His breakthrough discoveries in tissue engineering led to the first human-based artificial skin approved by the FDA for burn victims, as well as the development of liver, cartilage, bone, corneas, and blood vessels in humans.

Today, Langer continues to break ground with new discoveries in drug delivery and tissue regeneration. With a cadre of nearly 1,000 research students who have gone through his lab, his mission is being realized in all corners of the globe. He is currently working with the Gates Foundation to greatly expand the number of lives his research might touch. For more on his research, see the Langer Lab website and the Dreyfus Prize announcement

What principles drove you to continue your breakthrough research in large molecule-controlled drug delivery? What barriers did you cross? Did you have an “aha” or “lightbulb” moment?
My interest in understanding how to control the movement of large molecules began in an unusual way. I started my postdoctoral career working with the late Judah Folkman, attempting to isolate the first inhibitor of angiogenesis (blood vessel growth). To do so, it was critical to develop a bioassay for angiogenesis inhibitors, nearly all of which were macromolecules. We conceived of using a rabbit cornea assay where we could directly visualize blood vessel growth (Langer et al., 1976) through an ophthalmic microscope. However, that assay could take up to several months, so it was critical to have a very small biocompatible controlled release polymer system that would not cause inflammation in the cornea, and that could slowly and continuously release macromolecules (e.g. peptides, proteins, and nucleic acids) for long time periods.

When I started my investigations, it was widely believed that only low-molecular weight lipophilic compounds – but certainly not ionic molecules, peptides, or proteins – could be slowly released from biocompatible polymers. Dr. Folkman contacted many experts and they told him this couldn’t be done – large molecules couldn’t slowly leak out of a biocompatible polymer for any appreciable period of time.  The literature said the same thing. Sometimes I think the only reason I started working on this was that I hadn’t read that literature. Anyhow, I did work on it for several years and found hundreds of ways to fail. One of the ways I would do the release tests was with gel assay where you’d get a color change in the gel if the macromolecules were being released in active form. Almost every formulation I tested produced a color change in the gel in the first few hours and sometimes up to a day. But then there was nothing: no color change at all on day 2. I tested hundreds of systems and I was very discouraged. Then finally, I found a formulation made of ethylene-vinyl acetate copolymer that did result in a color change – and it kept changing every day, for over 100 days. I was incredibly excited to see this happen with my own eyes.

What has been the most impactful application of your research in drug delivery? Which aspect of your contribution has been most gratifying and why?
The most impactful thing to me is that according to a number of sources, hundreds of millions, if not billions, of people every year benefit from the principles, discoveries and inventions our lab has made. What’s most gratifying has been to know that the chemical and chemical engineering work our lab has done has enabled patients with cancer and other diseases to receive new treatments that have improved and, in some cases, saved lives.

In what direction might drug companies, healthcare and academic research institutions continue on with the foundations you’ve laid?
There are many. In drug delivery, crossing barriers such as the blood brain barrier; being able to target drugs to specific cells; designing intelligent delivery systems; and developing new nano- based systems to enable genetic therapies. In tissue engineering, creating organ on a chip-based systems to accelerate drug testing and reduce reliance on animal and human testing; and developing ways to restore everything from blindness and deafness to eliminating paralysis to repairing cartilage, bone, skin and other tissues and organs.

How would you describe the flow of your career, in terms of where you’ve focused your research over time? How have you followed up with tissue engineering?
I’ve spent almost all of my career focused on the interface of chemistry and chemical engineering on human health. It started when I did my postdoctoral work with Judah Folkman at Boston Children’s Hospital where I was the only engineer in the hospital. I developed techniques to isolate and test angiogenesis inhibitors (this involved creating the first biocompatible polymer systems to slowly release macromolecules (angiogenesis inhibitors are macromolecules)) and using these techniques to prove that angiogenesis inhibitors existed (prior to this most scientists didn’t believe such inhibitors existed) by isolating the first such inhibitors. This got me interested in understanding how materials could be used to deliver drugs.

Also while at the hospital, I met Jay Vacanti, a surgeon who became head of the liver transplant program, and he told me about the organ shortage problem. Together, we came up with a new idea on how to address this by conceiving of combining appropriate three-dimensional polymer structures and mammalian cells which would help spawn the field of tissue engineering. We have followed up on that field in a number of ways including synthesis of new materials; creating organs on a chip; developing new bioreactors for cells; and developing new approaches to create tissues like blood vessels, spinal cords, and restore hearing among others.

What aspects of your current work hold the greatest near-term promise for practical application?
I hope some of the things we are doing with the Gates Foundation to help people in the developing world are among them. We are trying to develop better delivery systems for drugs and vaccines, and better ways of providing nutrition for the developing world. A number of these are in clinical trials but there is still a long way to go.

In an ideal world, what would be the process that would enable scientists to be even more successful?  What are the most important resources scientists need to achieve their goals? From your perspective, what do you think stands in the way of big discoveries in the current environment?
I think funding for basic research, blue sky research is the most important thing. And also having that funding for long time horizons.

As a chemical engineer specializing in health care, what is the relative role of chemistry versus chemical engineering?
They are both incredibly important and sometimes the roles blur. Chemical engineering is often more applied. In our lab, we’ve been lucky to have outstanding people in both areas who work together.

What do you think is the next “big thing” out there? What does the healthcare industry and drug therapy research really need to focus on in the coming years and decades? What’s the biggest need in drug research to treat either one or more varying diseases?
There are many. Two big areas are the development of new genetic therapies such as siRna, mRNA, and gene editing; and cellular therapies for treating diseases like cancer or enabling what we call tissue engineering or regenerative medicine.

What advice would you give young chemists and chemical engineers?
Dream big dreams that can change the world, recognize that you may often be told that what you are dreaming about may be impossible and will never happen, but don’t give up on those dreams.

Looking to the future, are there additional goals or missions that you hope to achieve?
My major goals remain to come up with ideas that will have a big impact on the world, to bring those ideas to a clinical or practical reality, and to train the very best people I can to lead us into our future.

2019 Henry Dreyfus Teacher-Scholar Awards

The Camille and Henry Dreyfus Foundation has selected eight Henry Dreyfus Teacher-Scholars for 2019. The award provides an unrestricted research grant of $75,000 to young faculty at primarily undergraduate institutions who are accomplished researchers and committed educators.


Paul Abbyad, Santa Clara University
Sorting Cancer Cells Based on Metabolism Using Droplet Microfluidics


Mary Elizabeth Anderson, Furman University
Bottom-Up Assembly of Nanomaterials: Investigating Fundamentals of Formation to Tailor Material Structure and Properties


Louise Charkoudian, Haverford College
Unveiling Molecular Underpinnings of Natural Product Biosynthesis


Lionel Cheruzel, San Jose State University
Light-Driven P450 Biocatalysis Featuring Ru(II)-Diimine Complexes


Christopher Graves, Swarthmore College
Enabling New Catalytic Chemistry for Aluminum with Non-Innocent and Redox-Active Ligands


Amy Lane, University of North Florida
Revealing Biosynthetic Secrets to Unleash Nature’s Chemical Aptitude


William McNamara, The College of William & Mary
Catalyst-Sensitized Metal Oxides for Photocatalytic Hydrogen Generation


Rachel Stanley
, Wellesley College
The Gas Toolbox: Chemical Clues for Understanding the Effect of Climate Change on the Ocean

Archives