Institution	<u>Awarde</u>	<u>Project</u>
	2	2025
University of California, Berkeley	Ashok Ajoy	Quantum Sensor NMR
Massachusetts Institute of Technology	Connor Coley	Molecular Design, Synthesis, and Analysis with Data Science and Machine Learning
Columbia University	Milan Delor	Realizing lossless energy and information flow in materials and molecules
Michigan State University	Selvan Demir	Developing Lanthanide-based Organometallic Chemistry for Applications in Magnetism, Quantum Information Science, and Small Molecule Activation
University of Illinois Urbana- Champaign	Nicholas Jackson	A Chemically Transferable Coarse-Grained Electronic Structure Model for Polymers
Clark Atlanta University	Xinle Li	Sustainable Pathways to Impactful Porous Materials for Addressing Societal Challenges
University of California, Los Angeles	Yuzhang Li	Innovating Cryo-EM tools to accelerate technologies in energy and sustainability
Montana State University	Martín Mosquera	Investigate extended quantum correlations of quantum light and their effect on molecular chromophores
New York University	Marvin Parasram	Heteroatom Transfer Reactions Promoted by Photoexcited 1,3-Dipoles
University of Minnesota	Courtney Roberts	Taming Aryne Intermediates to Impact Medicinal Chemistry
Northwestern University	Linsey Seitz	Harnessing Dynamic Materials and Systems for Sustainable Electrocatalytic Technologies
The University of Chicago	Weixin Tang	Enzyme Engineering to Fuel Genome Editing and Therapeutics Discovery
Clemson University	Thao Tran Dominy	Chemical Bonding in Quantum Materials: Simple, Innovative Solutions for Future Energy and Information Technology
California Institute of Technology	Lu Wei	Illuminating subcellular biology through functional bond-selective imaging
University of Wisconsin-Madison	Zachary Wickens	Selective Synthesis using Light and Electricity
Harvard University	Su-Yang Xu	Bridging Quantum Chemistry and Physics by Chirality
University of California, Santa Barbara	Yang Yang	New Strategies for Stereoselective Radical Biocatalysis
University of Virginia	Huiyuan Zhu	Advancing Sustainable Chemistry and Environmental Remediation with Well-Defined Materials
The University of North Carolina at Chapel Hill	Aleksandr Zhukhovitskiy	Advancing the logic of polymer synthesis, modification, and degradation
	2	024
The University of Chicago	Chibueze Amanchukwu	Ion and Molecular Solvation to Control Electrochemical Processes
University of California, Santa Barbara	Raphaële Clément	Solid-State Lithium-Sulfur Batteries
California Institute of Technology	Scott Cushing	Understanding When Quantum Mechanics Controls Macroscopic Devices Using Novel Forms of Light
Indiana University Bloomington	Joseph Gerdt	Uncovering the Chemistry of Microbial Symbioses
Northwestern University	Todd Gingrich	Computational Tools for Stochastic, Far-From-Equilibrium Chemical Kinetics

Institution Awarde Project Princeton University Kelsey Hatzell Next Generation Materials for Energy and Climate Applications Deep-Tissue Light Delivery and Imaging Enabled by Chemistry Stanford University Guosong Hong Advances Johns Hopkins University Xiongyi Huang Bringing New Catalytic Functions to Metalloenzymes Harnessing New Modes of Reactivity for the Precise Synthesis of Polymers with Tailored Properties Texas A&M University Ouentin Michaudel University of Illinois at Urbana-Emergent Properties from Dynamicity: Investigating Conformational Control in Biomimetic Inorganic Systems Lisa Olshansky Champaign University of California, Riverside Giulia Palermo Dynamics and Mechanisms of Genome Editing Systems through the Lens of Computer Simulations University of Colorado Boulder Synthetic and Living Microrobots for Directed Transport in C. Wyatt Shields IV **Biomedicine** Molecular Solutions to Challenges in Materials for a Sustainable The University of Akron Junpeng Wang Massachusetts Institute of Alison Wendlandt Selective Catalytic Isomerization Reactions Technology University of North Carolina at Sidney M. Wilkerson-Hill Advancements in the Chemistry of Non-stabilized Carbenes -Chapel Hill Synthesis of Orphaned Cyclopropanes University of Washington Dianne Xiao Reimagining Porous Materials for a Sustainable Future Cornell University Rong Yang Advancing Polymer Synthesis via Non-covalent Interactions

University of California, Berkeley Michael W. Zuerch

		2023
Georgia Institute of Technology	Vinayak Agarwal	Marine biosynthetic enzymology in research and education
University of Wisconsin-Madison	Eszter Boros	Harnessing Coordination Chemistry of Non-Endogenous and Radioactive Metal Ions for Diagnosis and Therapy of Disease
Johns Hopkins University	Stephen D. Fried	How to Fold Every Protein – A Structural Proteomics Approach
Massachusetts Institute of Technology	Ariel Furst	Bio-inspired Electron Transfer for Equitable Technologies
Brandeis University	Grace G.D. Han	Light-Responsive Organic Materials for a Sustainable Future
University of Chicago	Chong Liu	Designing interfacial ion pathways for critical elements separation
Harvard University	Jarad Mason	Manipulating Phase Transitions and Porosity in Metal-Organic Materials: From Solid Refrigerants to Porous Water
Cornell University	Phillip Milner	Simplifying Synthesis at the Interface of organic and Materials Chemistry
Florida State University	Lea Nienhaus	Exploring Critical Parameters of Materials for High-Yield Solid-State Photon Upconversion
Boston College	Jia Niu	Precision Macromolecules for Sustainability and Biological Discoveries
Stanford University	Lauren O'Connell	Predator-prey interactions as a framework discovering new chemical toolkits
Columbia University	Allie Obermeyer	Harnessing protein assembly for living and soft materials
The University of Texas at Austin	Zachariah A. Page	Light as a Chemical Tool to Precisely Control Synthetic Soft Materials
California Institute of Technology	Kimberly See	Next-Generation Battery Chemistry

Symmetry and Beyond: Unveiling the Mysteries of Quantum Materials and Complex Interfaces

Institution	Awarde	Project
The Ohio State University	Christo Sevov	Battery-Inspired Strategies for Electrocatalytic Carbon-Carbon Bond Forming Reactions
University of Washington	Alexandra Velian	Molecular Approaches to Synthesize Single-Site Catalysts
Northwestern University	Muzhou Wang	New Methods Bringing Polymer Science into its Second Century
University of Michigan	Wenjing Wang	Molecular sensors and tools for studying G-protein-coupled receptor signaling and Parkinson's Disease
	2	2022
University of California, Los Angeles	Justin Caram	Materials which explore the extremes of excitonic photophysics
University of Illinois at Urbana- Champaign	Jefferson Chan	Light in, sound out: Making chemical probes to detect invisible disease states using photoacoustic imaging
Princeton University	Sujit S. Datta	Dynamics of soft and living matter in complex environments
University of Oregon	Christopher H. Hendon	Hydrogen Atom Transfer Catalysis in Earth-Abundant Metal- Organic Frameworks
North Carolina State University	Lilian Hsiao	Physico-chemical design of bioinspired soft materials to reproduce touch
The University of Chicago	Mark Levin	Single-Atom Logic for Molecular Skeletal Editing
Dartmouth College	Weiyang (Fiona) Li	Novel Functional Electrochemical Materials for Energy and Sustainability
Harvard University	Brian Liau	Unraveling Macromolecular Complexes and Gene Regulation with Chemical Genomics
Northeastern University	Steven A. Lopez	Sustainable energy and chemistry through computations and machine learning
California Institute of Technology	Maxwell J. Robb	Molecular Design Strategies for Mechanochemically Responsive Polymers
University of Colorado Boulder	Sandeep Sharma	Accurate electronic structure for quantum materials and metalloenzymes
Massachusetts Institute of Technology	Daniel L. M. Suess	Understanding and Exploiting Electronic Cooperation in Metalloclusters
Stanford University	William Tarpeh	Rendering "Wastewater" Obsolete: Designing Selective Electrochemical Separations to Valorize Water Pollutants
University of Washington	Ashleigh Theberge	Bioanalytical Chemistry for Medicine and the Environment
Johns Hopkins University	V. Sara Thoi	Molecular Approaches to Materials Design in Energy Conversion and Storage
University of California, Davis	Jesús Velázquez	Atomically Precise Active Sites for Catalytic Small-Molecule Conversion
The Pennsylvania State University	Lauren Zarzar	Dynamics of Active and Responsive Microscale Materials
Yale University	Mingjiang Zhong	Rapid Access to Diversified Polymer Properties through Microstructure Engineering
	2	021
The University of Chicago	John S. Anderson	Leveraging Unorthodox Bonding Effects in Transition Metal Molecules and Materials
The University of Texas at Austin	Carlos R. Baiz	Ultrafast Dynamics at Heterogeneous Liquid-Liquid Interfaces
University of California, Santa Barbara	Christopher M. Bates	Phase Behavior of Statistical Bottlebrush Copolymers

Institution	Awarde	Project
University of Maryland	Osvaldo Gutierrez	New Paradigms in Sustainable Catalysis
Offiversity of Maryland	Osvaluo Gutierrez	New I aracing in Sustainable Catalysis
Northwestern University	Julia A. Kalow	Harnessing Reactivity-Property Relationships for Polymer Discovery
University of California, Berkeley	Markita P. Landry	Plant Transport Phenomena to Optimize Plant Photosynthesis
Cornell University	Song Lin	An Electrocatalytic Approach to Organic Reaction Discovery
Yale University	Nikhil S. Malvankar	Biogenic production of robust and scalable nanomaterials with genetically tunable electronic, optical, and mechanical functionalities.
Massachusetts Institute of Technology	Karthish Manthiram	Electrification and Decarbonization of Chemical Synthesis
University of California, Davis	David E. Olson	Chemical Tools for Controlling Neuroplasticity
Brown University	Brenda M. Rubenstein	Accurate and Efficient Stochastic Electronic Structure Algorithms for Materials Design
University of California, San Francisco	Ian B. Seiple	Chemical Synthesis to Enable Biological Discovery
The University of Utah	Luisa Whittaker-Brooks	Designer Hybrid Organic-Inorganic Interfaces for Coherent Spin and Energy Transfer
Lehigh University	Xiaoji G. Xu	Development of the Next Generation of Multimodal Chemical, Optical, and Electrical Scanning Probe Microscopy
University of Massachusetts Amherst	Mingxu You	Nucleic Acid-based Cellular Imaging and Analysis
University of California, San Diego	Joel Yuen-Zhou	Polariton Chemistry: Controlling Molecules with Optical Cavities

	2	020
The Ohio State University	L. Robert Baker	Visualizing Charge and Spin Dynamics at Interfaces
Brown University	Ou Chen	From Nanocrystals to Macromaterials: Bridging the Divide
Duke University	Emily R. Derbyshire	Chemical Approaches to Understand Infectious Agents
The University of North Carolina at Chapel Hill	Frank A. Leibfarth	Modern Approaches to Functional and Sustainable Thermoplastics
University of Rochester	Ellen M. Matson	Multimetallic Metal Oxide Clusters for Electrochemical Energy Storage and the Production of Chemical Fuels
University of California, Berkeley	Evan W. Miller	Chemical Indicators to Visualize Cellular Physiology
Dartmouth College	Katherine A. Mirica	Molecular Engineering of Multifunctional Materials for Chemical Sensing and Microelectronics
Arizona State University	Gary F. Moore	Bioinspired Materials for Green Chemistry
University of Michigan	Alison R. H. Narayan	Biocatalytic Reactions for Selective, Sustainable Synthesis
Massachusetts Institute of Technology	Gabriela Schlau-Cohen	Elucidating Structural and Energetic Dynamics of Membrane Proteins
University of California, Los Angeles	Alexander M. Spokoyny	Hybrid Materials and Reagents Featuring Boron-Rich Clusters
Vanderbilt University	Steven D. Townsend	Chemical Approaches for Trojan-Horse Microbicidal Contraception
The University of Chicago	Suriyanarayanan Vaikuntanathan	Controlling Organization, Self-assembly, and Dynamics in Complex Non-equilibrium Systems
Harvard University	Christina Woo	Chemical Control of Cellular Signaling

Institution	<u>Awarde</u>	<u>Project</u>
		2019
Princeton University	José L. Avalos	Spatial and Dynamic Control of Engineered Metabolism for Microbial Chemical Production
New York University	Tianning Diao	Stereoselective Alkene Carbofunctionalization: Method Development and Applications
The University of Chicago	Bryan C. Dickinson	Chemical and Evolutionary Approaches to Probe and Control Biology
The Scripps Research Institute	Keary M. Engle	New Strategies for Selective Catalytic Functionalization of C–C $\pi\textsc{-}\textsc{Bonds}$
University of Minnesota	Renee R. Frontiera	Nanoscale Raman Spectroscopy
Colorado State University	Garret M. Miyake	Harnessing the Power of Light: Light-Driven Syntheses Reflective Materials
Yale University	Timothy R. Newhouse	Chemical Technologies and Computational Approaches for the Stepefficient Synthesis of Structurally Complex Natural Products
University of Pennsylvania	Amish J. Patel	How Surfaces Recognize and Bind Nascent Crystals
Iowa State University	Dipali G. Sashital	Defining the Molecular Basis for Memory Formation in CRISPR-Cas Systems
University of South Carolina	Natalia B. Shustova	Photophysics of Hybrid Hierarchical Structures with Emphasis on Directional Energy Transfer
Purdue University	Christopher Uyeda	Designing New Catalysts Using Metal-Metal Bonds
Washington University in St. Louis	Timothy A. Wencewicz	New Antibiotics from Nature's Chemical Inventory
University of California, Irvine	Jenny Y. Yang	Molecular Design of Redox Catalysts
		2018
Washington University in St. Louis	Alexander B. Barnes	Magnetic Resonance Technology for In-cell NMR Structural Determination of HIV Latency Reversal Agents
The Pennsylvania State Universit	y Amie K. Boal	Watching Metalloenzymes at Work
Boston College	Abhishek Chatterjee	A Genetically Encoded Toolset to Unravel the Roles of Post- translational Modifications in Human Biology
University of California, Santa Barbara	Irene A. Chen	Probing Known Unknowns in Systems Biology
Emory University	Francesco A. Evangelista	Quantum Renormalization Group Methods for Excited States of Strongly Correlated Electrons
Northwestern University	Danna Freedman	Applying Inorganic Chemistry to Challenges in Physics
University of Delaware	Catherine L. Grimes	Breaking Down and Building Up Bacterial Cell Walls to Understand Inflammation
Virginia Polytechnic Institute and State University	l John B. Matson	Functional Bioactive Materials for Gasotransmitter Delivery and Tissue Engineering
Harvard University	Kang-Kuen Ni	Ultracold Molecules for Chemistry and Physics
University of Michigan	Corinna S. Schindler	New Methods for Sustainable Organic Synthesis
Princeton University	Mohammad R. Seyedsayamdost	Total Chemo-Enzymatic Synthesis of Vancomycin and its Analogs
California Institute of Technology	y Mikhail G. Shapiro	Molecular Engineering for Noninvasive Imaging and Control of Cellular Function

<u>Institution</u> Massachusetts Institute of Technology	<u>Awarde</u> Matthew D. Shoulders	<u>Project</u> Molecular Mechanisms of Protein Folding and Evolution in Living Cells
	2	2017
North Carolina State University	Chase L. Beisel	Understanding and Exploiting the Biochemical Properties of CRISPR-Cas Immune Systems
University of Washington	Brandi M. Cossairt	The Synthetic Inorganic Chemistry of Sustainable Technologies
Yale University	Jason M. Crawford	Decoding Specialized Bacterial Metabolic Pathways in the Human Microbiome
University of California, Irvine	Aaron P. Esser-Kahn	Chemical Methods to Understand and Improve Vaccines
University of Illinois at Urbana- Champaign	Alison R. Fout	Ligand Influences on Base Metals for Multi-Electron Reactions
University of Wisconsin–Madisor	Randall H. Goldsmith	New Technologies for Single-Molecule Spectroscopy: Optical Microresonators, Fluorescent Catalysts, High Concentrations, and Cancelling Brownian Motion
Princeton University	Robert R. Knowles	Proton-Coupled Electron Transfer in Organic Synthesis and Asymmetric Catalysis
Northwestern University	Julius B. Lucks	A Synthetic Approach to Uncovering how RNA Molecules Coordinate the Biochemical Processes of Life
Stanford University	Thomas E. Markland	Theory and Simulation of Quantum Processes at Interfaces and in Confinement
University of California, San Diego	Christian M. Metallo	Metabolic Regulation of Lipid Diversity
University of California, Santa Barbara	Michelle A. O'Malley	Deconstructing Microbial Consortia for Sustainable Chemistry
Massachusetts Institute of Technology	William A. Tisdale	Energy Transport in Semiconductor Nanomaterials
The University of Texas at Austin	Guihua Yu	Building Artificial Layered Solids from the Bottom-Up to Enable New Energy Technologies
	2	2016
University of Washington	Andrew J. Boydston	Functional Materials across Multiple Length Scales
Columbia University	Luis M. Campos	Development of Materials for Next Generation Solar Cells
Stanford University	William C. Chueh	Ion Insertion Electrochemistry at the Molecular & Nano Scale
University of California, San Diego	Neal K. Devaraj	Site-Specific Covalent Tagging of RNA for Live Cell Imaging and Affinity Purification
Massachusetts Institute of Technology	Mircea Dincă	Teaching Sponges New Tricks: Charge Transport and Heterogeneous Catalysis in Microporous Metal Organic Frameworks
University of California, Berkeley	Naomi S. Ginsberg	Elucidating Dynamic Processes in Heterogeneous Condensed Phases at the Nanoscale
Carnegie Mellon University	Aditya S. Khair	Physico-chemical Transport Processes in Soft Materials and Complex Fluids
The University of Chicago	Jared C. Lewis	Engineering Proteins for Selective Catalysis
Virginia Polytechnic Institute and State University	Amanda J. Morris	Metal Organic Framework Artificial Photosynthetic Arrays
Wayne State University	Eranda Nikolla	Oxidative Coupling of Methane using Layered, Nickelate Oxide Catalysts

Institution	Awarde	Project
University of Oregon	Michael D. Pluth	New Tools for Biological Hydrogen Sulfide Research and Applications to Enhanced Chemical Education
University of Michigan	Nathaniel K. Szymczak	New Approaches to Develop Catalysts for Energy Relevant Chemical Conversions
Duke University	Qiu Wang	Developing New Strategies and Chemical Probes for Molecular Imaging
	2	015
Harvard University	Emily P. Balskus	Discovering and Manipulating the Chemistry of Human Gut Microbes
University of Oregon	Shannon W. Boettcher cher	Semiconductors, Electrocatalysts, and Interfaces in Energy Conversion and Storage
Stanford University	Jennifer A. Dionne	New Optical Materials to Visualize and Control Nanoscale Phenomena
The Ohio State University	Joshua E. Goldberger	Solid-State Materials at the Atomic Scale
California Institute of Technology	André Hoelz	Atomic Structure of the Nuclear Pore Complex
Northwestern University	Michael C. Jewett	Biocatalysis Beyond the Cell: Molecular Engineering Catalytic Ensembles for Cell-free Synthetic Biology
Columbia University	Wei Min	Seeing the Invisible: Discovering New Spectroscopic Contrasts for Bio-imaging
University of Illinois at Urbana- Champaign	Douglas A. Mitchell	Harnessing the Power of Genome-Mining and Biosynthesis to Combat Antibiotic Resistance
The University of North Carolina at Chapel Hill	David A. Nicewicz	New Transformations in Chemical Synthesis via Organic Photoredox Catalysis
Massachusetts Institute of Technology	Bradley D. Olsen	New Materials from Bioinspired and Biofunctional Polymers
Washington University in St. Louis	Gary J. Patti	Mapping Cellular Interactions through Cell-Specific Isotopic Labeling and Metabolomics
University of California, Irvine	Jennifer A. Prescher	Expanding the Imaging Toolbox
University of Pennsylvania	Joseph E. Subotnik	New and Intuitive Approaches for Modeling Electronic Relaxation After Photo-Excitation
	2	014
California Institute of Technology	Theodor Agapie	Multimetallic and Metal-ligand Cooperativity for Catalysis
University of Texas at Austin	Hal Alper	Utilizing Cells as Biocatalysts for Producing Commodity and Specialty Chemicals
University of Massachusetts Amherst	Paul Dauenhauer	Production of Renewable Chemicals and Fuels by High Temperature Pyrolysis Chemistry of Cellulose
Yale University	Nilay Hazari	Transition Metal Catalyzed Conversion of Carbon Dioxide and Mechanistic Studies of the Reactions
Boston University	Ramesh Jasti	The Bottom-Up Organic Synthesis of Graphitic Nanomaterials with Well-Defined Structures and Properties
Stanford University	Matthew Kanan	Catalyzing CO2 Recycling and Controlling Reactions at Interfaces
Massachusetts Institute of Technology	Elizabeth Nolan	Understanding the Physiological Role of Peptides / Proteins that Bind Metals and their Function as Antibacterial Agents
Princeton University	Rodney Priestley	Understanding the Combined Roles of Size, Interfaces, and Processing on the Properties of Amorphous Polymers

<u>Institution</u>	<u>Awarde</u>	<u>Project</u>
Emory University	Khalid Salaita	Cellular Mechanochemistry at Interfaces: Sensing and Manipulating Forces in Living Systems
University of Wisconsin–Madison	Jordan Schmidt	Computational Modeling for the Properties of Complex Materials, with Applications to Energy and Catalysis
Indiana University	Sara Skrabalak	Shaping the Synthesis of Nanoscale Solids
Purdue University	Adam Wasserman	Extending the Limits of Applicability of Density Functional Theory towards Larger Systems and Longer Times
Northwestern University	Emily Weiss	Controlling the Electronic Structure and Dynamics at Nanoscale Interfaces between Inorganic and Organic Materials
University of Rochester	Daniel Weix	New Methods and Mechanisms for Cross Couplings in C-C Bond Formation and Organic Synthesis
Temple University	Michael Zdilla	Synthesis and Reactivity of Multimetal Systems Inspired by Biology
	2	013
Harvard University	Theodore A. Betley	Correlation of Electronic Structure to Reactivity in Organometallic Catalysis and Small Molecule Activation
University of California, Berkeley	Michelle C. Chang	System Level Studies for Cellular Synthetic Biology
Cornell University	William R. Dichtel	Bottom-up Synthesis of Structurally Precise Organic Materials and Interfaces
Princeton University	Abigail G. Doyle	Transition Metal Catalysis for the Discovery and Development of Valuable Synthetic Methods
University of California, Los Angeles	Neil K. Garg	Catalytic Formation of Amide Bonds
Michigan State University	Thomas W. Hamann	Molecular and Material Approaches to Advance Solar Energy Conversion
Hunter College of the City University of New York	Mandë Holford	Lessons From Nature: Discovery, Characterization and Delivery of Novel Peptide Therapeutics from Venomous Marine Snails
University of Washington	Munira Khalil	Measuring Complex Molecular Dynamics in Solution with High Spatial and Temporal Resolution
University of Michigan	Stephen Maldonado	New Frontiers in Semiconductor Electrochemistry
California Institute of Technology	Thomas F. Miller	Quantum Dynamics from Classical Trajectories: New Approaches to Simulating Biological and Molecular Catalysts
University of California, Santa Barbara	Baron G. Peters	Additives for Control over Polymorph Selection during Nucleation: Computational Approaches
University of Illinois at Urbana- Champaign	Charles M. Schroeder	Molecular Engineering of New Materials for Biological Imaging & Polymeric Assembly
Boston University	Corey R. J. Stephenson	Sustainable Catalysis Mediated by Visible Light Photosensitization
	2	012
Harvard University	Adam Cohen	New Tools to Study Molecules and Cells
The University of Chicago	Greg Engel	Exploiting coherent response to electronic excitation to control
The Oniversity of Chicago	Greg Eriger	excited state reactivity
University of California, San Diego	Joshua Figueroa	Isolable Monoalkyne Intermediates in the Alkyne Cyclotrimerization Catalytic Cycle
Yale University	Seth Herzon	Synthesis and Study of Complex Antiproliferative Natural Products
The Ohio State University	Christopher Jaroniec	Atomic Resolution Studies of Biomacromolecular Assemblies by Solid-State Nuclear Magnetic Resonance Spectroscopy

Institution	<u>Awarde</u>	<u>Project</u>
University of Pittsburgh	Steven Little	Mimicking Biological Structure and Behavior Using Polymeric Release Systems and Carbon Nanotubes
University of Oregon	Shih-Yuan Liu	Developing the basic science and applications of boron nitrogen heterocycles
Massachusetts Institute of Technology	Christopher Love	Application of interfacial chemistry, microfabrication, and process design to engineer integrated approaches to single-cell analysis
University of Washington	Dustin Maly	Chemical Tools for Studying Signal Transduction
University of Michigan	Anne McNeil	Towards the Next Generation of Tunable Organic Materials
The University of Utah	Valeria Molinero	Microscopic Mechanisms Of Phase Transitions And Molecular Organization
Princeton University	Celeste Nelson	The Chemistry of Morphogenesis: Quantitative Analysis of Transcription Factor Kinetics During Tissue Development
The Pennsylvania State University	William Noid	Theory and method development for improved multiscale models
California Institute of Technology	Sarah Reisman	Target-Directed Synthesis: A Platform for the Discovery and Development of New Synthetic Methods and Strategies
	2	2011
Kansas State University	Christine Aikens	Unraveling the Role of Electronic Structure in Nanoparticle Physical and Chemical Properties
Columbia University	Ruben L. Gonzalez, Jr.	Single-molecule mechanistic studies of protein synthesis by the ribosome
The Ohio State University	John Herbert	Quantum Chemistry in the Condensed Phase
University of Massachusetts Amherst	George Huber	The development of catalytic chemical processes for producing hydrocarbon fuels and chemicals from renewable biomass sources.
Carnegie Mellon University	Rongchao Jin	Quantum-Sized Metal Nanoclusters
University of Michigan	Kevin Kubarych	Ultrafast Vibrational Snapshots of Photocatalysis and Protein Dynamics
University of Pennsylvania	So-Jung Park	Controlling Materials Properties through the Self-Assembly of Nanoparticles and Polymer Amphiphiles
University of Illinois at Urbana- Champaign	Nathan Price	Integrative implementation of complex biochemical reaction networks for systems biology and medicine
Harvard University	Tobias Ritter	Redox Chemistry for Positron Emission Tomography Imaging
University of Maryland, College Park	Herman Sintim	Small Molecule Modulators of Bacterial Virulence and Biofilm Formation
Tufts University	Charles H. Sykes	Turning Molecules into Motors and Mechanical Devices
University of California, Berkeley	Ting Xu	Directed Hierarchical Assemblies Toward Functional Soft Materials
The University of North Carolina at Chapel Hill	Wei You	Organic/Molecular Materials Science: Integration of Synthesis with Devices
	2	2010
University of Michigan	Kate Carroll	Painting the Cysteine Chapel: New Tools to Probe Oxidation Biology
University at Buffalo	Matthew Disney	Progress Towards the Rational and Modular Design of Small Molecules Targeting RNA
University of Minnesota	Kevin Dorfman	Simulating DNA Electrophoresis in Complex Geometries

Institution	<u>Awarde</u>	<u>Project</u>
Indiana University	Amar Flood	Strong CHAnion Hydrogen Bonds from Triazoles and in Triazolophanes
Louisiana State University	Jayne Garno	Combining Magnetic Sample Modulation (MSM) with Contact‐Mode Atomic Force Microscopy for Measurement of Magnetic Properties at the Nanoscale
University of California, Santa Barbara	Song-i Han	Unraveling the role of hydration water in protein dynamics and function
Queens College, City University of New York	Seogjoo Jang	Theory development and computational modeling of exciton and electron/hole migration in soft disordered environments
University of Illinois at Urbana- Champaign	Benjamin McCall	Astrochemistry: combining high resolution spectroscopy and measurements of reaction kinetics/dynamics with astronomical observations and modeling
Case Western Reserve University	R. Mohan Sankaran	A new paradigm for plasma processing: Microplasma synthesis of nanomaterials for catalytic, electronic, and photovoltaic applications
University of California, Berkeley	Rachel Segalman	Functional Nanoscale Polymers for Energy Applications: Molecular Design, Self-Assembly and Structure-Device Property Relationships
The University of Chicago	Dmitri Talapin	III-V semiconductors through solution-phase synthesis and self-assembly
Virginia Polytechnic Institute and State University	l Edward Valeev	Predictive computation of molecular properties with explicitly correlated wave function methods: energetics, spectra, transport.
University of Virginia	B. Jill Venton	Tiny sensors for tiny organisms: measuring neurotransmitter dynamics in the fruit fly brain.
University of Wisconsin-Madison	n Tehshik Yoon	Novel Strategies for Catalytic Redox Reactions

		000
	2	009
Harvard University	Alán Aspuru-Guzik	Quantum Computation and Quantum Information for Chemistry
University of California, Davis	Xi Chen	Chemoenzymatic Approaches for Chemical Glycobiology
Duke University	Katherine J. Franz	Chemical Tools to Manipulate Metal-Catalyzed Oxidative Stress
University of Minnesota	Christy L. Haynes	Electroanalytical Eavesdropping on Cellular Communications
University of California, Irvine	Alan F. Heyduk	Redox-Active Ligands as a New Paradigm for Multi-Electron Small- Molecule Reactions Relevant to Energy Efficiency
University of Florida	So Hirata	The developments and applications of predictive electronic and vibrational many-body methods for molecules and macromolecules.
Columbia University	Laura J. Kaufman	The Effects of Crowding on Dynamics Across Length Scales and Across Disciplines
University of Michigan	Suljo Linic	Heterogeneous catalysis in 21st Century: well defined, high uniform, targeted nano-structures as highly selective heterogeneous catalysts, photo-catalysts, and characterization tools
University of California, Berkeley	Richmond Sarpong	New strategies and methods for the total synthesis of natural and unnatural compounds using metal-catalyzed reactions.
California Institute of Technology	Shu-ou Shan	Towards a new paradigm for GTPase regulation of intracellular protein targeting.
New Mexico State University	Jeremy M. Smith	Research on "nitrogen atom transfer" by three-fold symmetric iron nitrido complexes and description of the electronic structures of thermally stable iron(IV) complexes.
University of California, Santa Barbara	Todd M. Squires	Dynamic effects at physico-chemical interfaces
Cornell University	Abraham Stroock	Science and engineering of metastable liquid water in synthetic trees.
University of South Carolina	Paul Ryan Thompson	Chemical Biology of Eukaryotic Gene Regulation

Institution	<u>Awarde</u>	<u>Project</u>
	:	2008
University of Texas at Austin	Christopher W. Bielawski	Reversible Polymers Based on Biscarbenes: Creating New Opportunities in Self-Healing Electronics, Catalysis, and Emissive Materials
Cornell University	Garnet K. Chan	Building New Paradigms in Quantum Chemistry: from Quantum Renormalisation Groups to Quantum Tensor Networks
University of Houston	Olafs Daugulis	New Synthetic Organic Chemistry Reactions Involving Transition- Metal Mediated Electrophilic C-H Bond-Activation
Northwestern University	Lincoln J. Lauhon	Development of Quantitative Synthesis-Structure-Property Relationships for Nanostructured Materials
Massachusetts Institute of Technology	Mohammad Movassaghi	Syntheses of Biologically Interesting Alkaloids and the Development of New and General Routes to Nitrogen-containing Heterocycles
University of California, Santa Barbara	Thuc-Quyen T. Nguyen	Understanding Charge Transport and Electronic Properties of Small Conjugated Molecules and Conjugated Polyelectrolytes for Applications in Optoelectronic Devices
The University of North Carolina at Chapel Hill	Garegin Papoian	Multi-Scale Modeling of Biophysical Processes in the Cell
Virginia Polytechnic Institute and State University	Theresa M. Reineke	Carbohydrate-Based Polymers for Cardiovascular Nucleic Acid Delivery and MRI
The Johns Hopkins University	Justine P. Roth	Fundamental Principles of Oxidation Chemistry Relevant to Biology and Medicine
University of California, Los Angeles	Yi Tang	Natural Product Biosynthetic Pathways for Novel Enzymes and Useful Biocatalysts
Texas A&M University	Victor M. Ugaz	Directed Assembly of Ultra-concentrated Mesophases: a New Way to Detect and Characterize Biomolecules
University of South Carolina	Qian Wang	Hierarchical Micro-Nano Assemblies for Probing Cell-Matrix Interactions
University of Illinois at Urbana- Champaign	M. Christina White	Aliphatic and Allylic C-H Oxidations Methods for Streamlining Complex Molecule Synthesis
University of California, Berkeley	Haw Yang	Single-Molecule Approaches Towards Understanding Chemical Reactivity in Complex Systems
The Ohio State University	Dongping Zhong	Ultrafast Functional Dynamics of Biomolecules
		2007
University of Wisconsin–Madison	n Helen E. Blackwell	Expanding the Language of Bacterial Communication Using Synthetic Ligands
University of California, Santa Barbara	Frank L. H. Brown	Theoretical studies of biomembrane dynamics and structure, single molecule spectroscopy, and stochastic processes in chemistry and biophysics
University of Massachusetts Amherst	Jeffrey M. Davis	Understanding the Dynamics of Microscale Flows Over Heterogeneous Surfaces
University of Pennsylvania	Ivan J. Dmochowski	Chemical tools for elucidating complex biological processes such as brain development, limb regeneration, and tumorigenesis
Emory University	Justin P. Gallivan	Reprogramming Bacteria with Small Molecules and RNA
University of Washington	David S. Ginger	Probing Optoelectronic Processes in Nanostructured Organic Solar Cells
Northwestern University	Bartosz A. Grzybowski	Electrostatic Self-assembly of Static and Dynamic Nanostructures and Nanostructured Materials.

Institution	<u>Awarde</u>	<u>Project</u>
Rice University	Jeffrey D. Hartgerink	Self-assembly of nanostructured organic materials for biomedical applications and multi-disciplinary education
University of Minnesota	Efrosini Kokkoli	Biomimetic approaches for the design of materials and therapeutics
Harvard University	Gavin MacBeath	Receptor Tyrosine Kinase Promiscuity and Cancer
The University of Chicago	David A. Mazziotti	Blueprints of Atoms and Molecules: Two-particle Density-Matrix Representations of Electronic and Nuclear Motion
University of California, Irvine	Sergey Nizkorodov	Laboratory studies of chemical processes taking place in atmospheric aerosol particles
Brandeis University	Oleg V. Ozerov	Recyclable catalysts and structural discovery through ligand design
The Pennsylvania State Universit	y Raymond E. Schaak	Chemical Strategies for the Synthesis of Multi-Metal Nanomaterials: Exploring Uncharted Territory in the Synthesis of Metallurgical Solids
Massachusetts Institute of Technology	Michael S. Strano	Conduction channel spectroscopy: a new tool to study the chemistry of 1-D systems
	2	2006
The Ohio State University	Heather C. Allen	Atmospheric Aerosol Chemistry: Understanding How Liquid and Solid Surfaces Mediate Aerosol Chemistry
Cornell University	Paul J. Chirik	New Transition Metal Reagents for Energy-Efficient, Environmentally Benign Chemical Synthesis
University of California, Santa Barbara	Patrick S. Daugherty	Molecular Specificity Evolution: Enabling Technology for Therapeutic Engineering and Diagnostic Proteome Fingerprinting
The Johns Hopkins University	David H. Gracias	A Research and Education Program in Nano and Microscale Self Assembly: Integrated circuits, chemical sensors and remote controlled chemistry
The University of Chicago	Chuan He	Developing Chemical Probes to Study DNA Repair and DNA Methylation/Demethylation
University of Illinois at Urbana- Champaign	Paul J. Hergenrother	Targeting mRNA for the Treatment of Neurodegenerative Disorders
University of Illinois at Chicago	Yoshitaka Ishii	Expanding Boundaries of Structural Analysis by Solid-State NMR: From Paramagnetic Complexes to Misfolding of Amyloid Proteins
The University of North Carolina at Chapel Hill	Jeffrey S. Johnson	The Application of Polarity Reversal Concepts in the Discovery of New Catalysts and Chemical Reactivity
Emory University	James T. Kindt	Simulation and statistical theory of self-assembled systems: Molecular and mesoscale modeling of mixed membranes and more
The Pennsylvania State Universit	y Carsten Krebs	Mechanisms of Iron-containing Enzymes: Characterization of reaction intermediates by a combination of rapid kinetic and spectroscopic methods
University of Pennsylvania	Eric Meggers	Chemical Biology with Organo-Metallic Compounds
Arizona State University	Dong-Kyun Seo	Theoretical and Experimental Studies on Itinerant Electron Magnetism in Intermetallics
Massachusetts Institute of Technology	Alice Y. Ting	New chemical methodologies for cellular imaging
North Carolina State University	Orlin D. Velev	Colloidal and Biocolloidal Engineering on Electrically Controlled Microchips: New Principles for Making Bionanomaterials, Microbioassys and Microrobots
University of Michigan	John P. Wolfe	New Reactions for the Construction of Biologically Active Molecules and Intermediates of Synthetic Importance

Institution	<u>Awarde</u>	<u>Project</u>
	2	2005
Yale University	Victor Batista	Development of Semiclassical and Quantum Dynamical Methods for Quantum Reaction Dynamics Simulations
University of California, Berkeley	Kristie A. Boering	Atmospheric Chemistry and Climate on Earth and Other Exotic Planets: From the Molecular to the Global Scale
University of Washington	Daniel Gamelin	High-Tc Ferromagetic Semiconductors for Spintronics Applications: Development, Physical Characterization, and Chemical Manipulation
Columbia University	Brian R. Gibney	Design of Synthetic Metalloproteins Using Nonnatural Amino Acid Ligands
University of California, Irvine	Zhibin Guan	Programing Non-Covalent Interactions into Polymers for High-Order Structures and Advanced Properties.
North Carolina State University	Jason M. Haugh	Seminal and integrative advances in cell signaling from molecular structure and function to pathways, cell function, and tissue response
The University of Chicago	Rustem F. Ismagilov	Supporting Undergraduate Research to Understand Complex Chemical and Biochemical Reaction Networks Top-Down and Bottom-Up Using Microfluids
The Pennsylvania State Universit	y Christine D. Keating	Chemical approaches to the materials/biology interface: nanobiosensors and synthetic cells
Boston College	Shana O. Kelley	Cellular and Molecular Probes of Oxidative Biomolecular Damage
University of Rochester	Todd D. Krauss	Investigations of fundamental properties of nanometer scale materials, and the development of nanomaterials for novel applications in photonics and biology.
University of California, Los Angeles	Yung-Ya Lin	Seeing the Seeds of Cancer: Contrast and Sensitivity Enhancement for Early MRI Tumor Detection by the Butterfly Effect and Chaos Control
The University of Utah	Janis Louie	The Development of Transition Metal Catalysts for New Cycloaddition Reactions.
Indiana University	Daniel J. Mindiola	New Paradigms in Early Transition Metal Complexes Containing Reactive Metal-Ligand Multiple Bonds
California Institute of Technology	Brian M. Stoltz	Complex Natural Products as a Driving Force for Discovery in Organic Chemistry
Georgia Institute of Technology	Marcus Weck	Densely Multifunctional Copolymers: Nature-Inspired Use of Multi- Recognition Site Self-Assembly Onto Polymer Backbones for Materials Applications
Harvard University	Xiaowei Zhuang	Exploring RNA-protein interactions and virus infections by ultrasensitive fluorescence imaging and single-molecule spectroscopy
	2	2004
Stanford University	Justin Du Bois	Reaction design for the synthesis of neuroactive agents
University of California, Riversid	e Pingyun Feng	Development of Novel Porous Materials as Fast Ion Conductors and Photocatalysts
University of Illinois at Urbana- Champaign	Neil L. Kelleher	The evolution of large molecule Mass Spectrometry
The University of Chicago	Sergey A. Kozmin	Chemical Synthesis: from Molecular Complexity and Skeletal Diversity to Cell-Regulatory Function
Harvard University	David R. Liu	Organic Synthesis Programmed by DNA Templates
Columbia University	Colin P. Nuckolls	Nanoscale electronic materials from self-assembled organic building blocks

<u>Institution</u> The Pennsylvania State University	<u>Awarde</u> 7 Blake R. Peterson	Project Synthetic receptor targeting as a novel tool for drug delivery
University of Arizona	Andrei Sanov	Photoelectron imaging of the electronic structure and time-resolved dynamics of molecular cluster anions: Unraveling the driving force of chemistry
Princeton University	Stanislav Shvartsman	Quantitative Analysis of Receptor-mediated Gene Expression
The University of Utah	Matthew S. Sigman	Physical Organic Chemistry as a Tool for Catalyst Design and Development
Georgetown University	Jennifer A. Swift	Surface Chemistry Approaches to Understanding & Directing Molecular Crystal Growth Processes
University of Michigan	Nils G. Walter	Structural dynamics and function of RNA enzymes highlighted by fluorescence spectroscopy at the single-molecule and ensemble levels
University of California, Berkeley	Peidong Yang	Chemistry and physics of semiconductor nanowires.
	2	003
	-	
Carnegie Mellon University	Catalina Achim	Design and synthesis of biology-inspired metal-containing nanostructures with potential applications in molecular electronics
Massachusetts Institute of Technology	Jianshu Cao	Statistical analysis of single molecule measurements and theoretical description of non-exponential and non-Gaussian single-particle slow dynamics
Texas A&M University	Paul S. Cremer	Investigations of the lower critical solution temperature of polymers and proteins with a linear temperature array
University of Texas at Austin	Michael J. Krische	Catalytic reductive C-C bond formation: elemental hydrogen as terminal reductant
Cornell University	Kelvin H. Lee	New microfabricated technologies for proteome analysis
University of California, Los Angeles	Christopher J. Lee	Deciphering alternative splicing in the human genome: the new frontier in genomic complexity and proteome functional regulation
Georgia Institute of Technology	Louis A. Lyon	Design, synthesis, and self-assembly of stimuli-sensitive core/shell hydrogel nanoparticles
California Institute of Technology	David W. C. MacMillan	Enantioselective organocatalysis: Design of new catalysis concepts of broad utility to asymmetric chemical synthesis
Stanford University	Vijay S. Pande	New methods for the simulation of the kinetics and thermodynamics of biological molecules
Harvard University	Hongkun Park	Transport and scanned probe investigation of chemical nanostructures
The Scripps Research Institute	Floyd E. Romesberg	New approaches to combating antiobiotic resistance
University of Wisconsin-Madison	Shannon S. Stahl	Catalytic methods for selective chemical oxidation with molecular oxygen
Princeton University	Suzanne Walker	Understanding post-translational modifications: chemical approaches to identifying the O-GlcNAcylated proteome
	2	002
Northwestern University	Annelise E. Barron	N-substituted glycine oligomers (peptoids) with helical, amphipathic structure as biostable mimics of antimicrobial peptides
The University of Utah	Peter A. Beal	In vitro evolution of RNA for selective binding to acridine-peptide conjugates
Purdue University	Jillian M. Buriak	Nanoscale semiconductor surface chemistry
Princeton University	Jeffrey D. Carbeck	Measurements and modeling of electrostatic interactions in folded and denatured proteins

	•	G
Institution	<u>Awarde</u>	Project
Stanford University	Hongjie Dai	Carbon nanotubes as a model system for nanoscale chemistry and physics
University of California, Los Angeles	Michael W. Deem	Statistical mechanical studies of zeolite nucleation
Georgia Institute of Technology	Robert M. Dickson	Single-molecule electroluminescence in nanotechnology - from fundamental understanding to device development
Wayne State University	Theodore G. Goodson	Ultra-fast optical investigations of novel dendrimer macromolecules and dendrimer metal nanocomposites for applications in photonics
California Institute of Technology	Jonas C. Peters	New strategies in catalysis with novel coordination complexes
Harvard University	David R. Reichman	Dynamics and spectroscopy of molecules in superfluid helium clusters
Columbia University	Dalibor Sames	C-H bond activation in complex chemical assembly
Carnegie Mellon University	David S. Sholl	Development and applications of instrinsically chiral solid surfaces based on metals, semiconductors, and natural minerals
New York University	Mark E. Tuckerman	Theoretical studies and new-methods development for proton- transfer processes in biologically and technologically important systems
University of Illinois at Urbana- Champaign	Wilfred van der Donk	Exercises in understanding enzyme catalysis
University of Washington	Younan Xia	Chemistry and the physics of one-dimensional nanostructures
	20	001
The December 1 and Control I	plate per a com-	M. J. and C. and J. C. and J. C. L. and J. and J. C. L. and J. and J. C. L. and J. And J
The Pennsylvania State University	Philip Bevilacqua	Mechanistic studies of general acid-base catalysis and folding complexity in the HDV ribozyme
Rice University	Vicki Colvin	Protein crystals as scaffolds for materials design

	20	001
The Pennsylvania State University	Philip Bevilacqua	Mechanistic studies of general acid-base catalysis and folding complexity in the HDV ribozyme
Rice University	Vicki Colvin	Protein crystals as scaffolds for materials design
North Carolina State University	Jan Genzer	Self- and directed assembly of polymers in thin films and at interfaces
University of Illinois at Urbana- Champaign	David Gin	Development and application of novel and practical methods for the efficient synthesis of complex carbohydrates
University of Minnesota	Richard Hsung	Development of novel methodologies for synthesis of natural products with biological and medicinal relevance
Brandeis University	Wenbin Lin	Crystal engineering of polar and chiral solids for applications in nonlinear optics and enantioselective separations and catalysis
University of Oregon	Mark Lonergan	Engineering depletion regions and controlling interfacial reactivity at conjugated polymer interfaces through internal compensation
University of Rochester	Benjamin Miller	Understanding carbohydrate recognition through the design, synthesis, and analysis of synthetic receptors
University of Wisconsin–Madison	Paul Nealey	Hybrid nanofabrication techniques combining advanced lithography and self-assembling systems for applications in molecular electronics and cell culture
Utah State University	John Peters	Investigating the biochemical mechanism of reactions catalyzed by enzymes that contain transition metals using structure determination by X-ray diffraction methods
Northwestern University	Amy Rosenzweig	Metal trafficking by copper ATPases
University of California, Los Angeles	Benjamin Schwartz	Experimental and theoretical studies of ultrafast processes in condensed phases: charge transfer, conjugate polymer/metal interfaces, and multiphoton lithography
Harvard University	Matthew Shair	Target-oriented and diversity-oriented synthesis of complex molecules applied to chemical biology
The Scripps Research Institute	Erik Sorensen	Profiling the chemical reactivity of complex proteomes

Institution Duke University University of Notre Dame	Awarde Ross Widenhoefer Olaf G. Wiest	Project Palladium-catalyzed carbocyclization of functionalized dienes Electron-transfer-induced reactions in organic and bio-organic chemistry
	2	000
University of Colorado Boulder	Kristi S. Anseth	Novel photocrosslinkable materials and photopolymerization methods
University of South Carolina	Uwe H. F. Bunz	Synthesis and property evaluation of novel organic semiconductors based on poly(paraphenyleneethynylene)s
Cornell University	Geoffrey W. Coates	New catalysts for the synthesis of biodegradable polycarbonates from CO_2
University of California, Santa Barbara	Timothy Deming	Transition-metal complexes for peptides and polypeptide synthesis
University of New Mexico	Deborah G. Evans	Development of computational techniques and methods to simulate electron transfer in molecular arrays
The University of North Carolina at Chapel Hill	Michel R. Gagné	An outer-sphere approach to controlling catalytic reaction selectivities
Northwestern University	Hilary A. Godwin	Elucidation of the molecular mechanism of lead poisoning: biochemistry and aqueous coordination chemistry of Pb(II)
Duke University	Mark W. Grinstaff	Mechanistic studies of charge transfer in DNA
University of Minnesota	Marc A. Hillmyer	Design, synthesis, and application of new functional block copolymers
Columbia University	James L. Leighton	New methods and strategies for the synthesis of antibiotic medicinal agents
University of California, Berkeley	Jeffrey R. Long	Manipulating inorganic structures: general strategies for the synthesis of multimetal clusters and extended solid materials
University of Illinois at Urbana- Champaign	Todd J. Martinez	First-principles modeling of reaction dynamics including quantum effects
Boston College	Scott J. Miller	Discovery of new catalysts for the asymmetric synthesis of compounds of pharmaceutical interest
The University of Chicago	Milan Mrksich	Tailored substrates for mechanistic studies of cell adhesion
The Johns Hopkins University	John P. Toscano	Rational design of novel photochemical precursors to nitric oxide
University of Pennsylvania	Patrick J. Walsh	Chiral environment amplification: use of achiral ligands in asymmetric catalysis
Stanford University	Thomas J. Wandless	New strategies to improve protein-ligand binding interactions
University of Massachusetts Amherst	James J. Watkins	Novel deposition methods for the preparation of nanostructured devices
	1	999
University of Massachusetts Amherst	Scott M. Auerbach	Theory and simulation of molecules in nanopores
University of California, Berkeley	Carolyn R. Bertozzi	Chemical approaches to understanding and modulating dynamic cell surface structures
Indiana University	David E. Clemmer	Development of gas-phase separations for the analysis of peptide libraries
Boston College	John T. Fourkas	Probing single-molecule dynamics and structure using two-photon microscopy

Institution	Awarde	<u>Project</u>
University of Minnesota	C. Daniel Frisbie	Nanoprobing electrical transport and luminescence in organic materials
University of Colorado Boulder	Randall L. Halcomb	New directions in organic synthesis: targets, strategies, methods, and biochemical applications
University of Notre Dame	Sharon Hammes-Schiffer	Theoretical and computational investigations of chemical reaction dynamics in complex systems
University of Oregon	James E. Hutchison	Chemical approaches to nanoscale electronic materials and devices
The Johns Hopkins University	Thomas Lectka	Catalytic, asymmetric alkylations of N, O- and N, N-acetals
University of Delaware	Raul Lobo	Molecular recognition phenomena in crystalline silica-water networks containing organic guests
University of Illinois at Urbana- Champaign	Yi Lu	Structural characterization and engineering of metalloproteins and metalloribozymes
University of California, Santa Barbara	Dimitrios Maroudas	Multiscale computational study of semiconductor thin-film deposition and heteroepitaxial growth of strained semiconductor films and confined quantum structures
The Ohio State University	Anne B. McCoy	Theoretical investigations of the effects of weak intermolecular interactions on spectroscopy and reaction dynamics in van der Waals complexes
University of Arizona	Dominic V. McGrath	Photoresponsive dendritic macromolecules for information storage, organic synthesis, and chemical agent delivery
Boston University	Amy S. Mullin	Putting out molecular fires: energy flow pathways and chemical reactions of highly excited molecules
University of Pennsylvania	Andrew M. Rappe	Tailoring molecule-surface properties via substrate modification
Texas A&M University	Daniel Romo	Synthesis and biological studies of natural products displaying potent physiological effects
Tulane University	Daniel K. Schwartz	The structural and dynamic properties of ultra-thin organic films formed on liquid and solid surfaces
Colorado State University	Yian Shi	Asymmetric synthesis with chiral dioxiranes
Wayne State University	Peng George Wang	Chemical and enzymatic synthesis of glycoconjugates and their biomedical applications
		1998
Heimeit of California Design	NT J. J. T. Ald. G	
University of California, Davis	Nicholas L. Abbott	Spontaneous assembly on the meso-scale using surface forces mediated by liquid crystals
Polytechnic University	Nitash P. Balsara	Microstructured polymer materials under quiescent conditions and under the influence of external fields
New York University	Stacey F. Bent	Studies of amorphous semiconductor alloys: growth and processing at a molecular level
Michigan State University	Marcos Dantus	Elucidating the dynamics of chemical reactions at high energies by femtosecond time-resolved techniques in the vacuum ultraviolet
University of Maryland, College Park	Jeffery T. Davis	Bioorganic chemistry and molecular recognition
University of Delaware	P. Andrew Evans	New transition-metal-catalyzed carbon-carbon bond forming reations
Colorado State University	Ellen Fisher	Use of resonantly enhanced multiphoton ionization to probe radical- surface interactions
Stony Brook University	Clare P. Grey	Solid-state NMR studies of disordered materials: molecular sieves, fluorides and oxyfluorides
University of Illinois at Urbana- Champaign	Martin Gruebele	Coordination of secondary and tertiary structure during protein folding

<u>Institution</u>	<u>Awarde</u>	<u>Project</u>
University of Oregon	Michael M. Haley	Synthesis and characterization of novel benzenoid and non- benzenoid aromatic systems
Massachusetts Institute of Technology	Paul E. Laibinis	Development and application of solution-phase reactions at hydrogen-terminated silicon surfaces
Wayne State University	John Montgomery	New cyclizations and multicomponent couplings
University of South Carolina	Catherine J. Murphy	Biophysical applications of nanomaterials
University of Virginia	Brooks Hart Pate	New high-resolution infrared spectroscopy techniques for measuring the rate of conformational isomerization
North Carolina State University	David A. Shultz	Preparation and characterization of building blocks for molecule- blocks for molecule-based magnets
Boston College	Marc L. Snapper	Development of new olefin metathesis-based methods for the construction of complex natural products
University of Massachusetts Amherst	Michael Tsapatsis	Synthesis and assembly of hollow silicate nanospheres and incorporation of materials chemistry in the curriculum
University of California, Irvine	Keith A. Woerpel	The development of stereoselective methods of organic synthesis using new reactions of organosilicon compounds
Yale University	John L. Wood	Organic chemistry: synthetic methods and strategy development, natural product synthesis, and applications of synthesis at the organic chemistry/cellular biology interface
The Pennsylvania State Universi	y XuMu Zhang	Development of asymmetric catalysts for the synthesis of chiral drugs and agrochemicals
		1997
		1997
	F 6 4 111	
University of California, Santa Barbara	Eray S. Aydil	In situ surface and plasma diagnostics during plasma-assisted deposition and etching of electronic materials
University of California, Santa Barbara University of Wisconsin–Madiso	•	In situ surface and plasma diagnostics during plasma-assisted deposition and etching of electronic materials Fundamental molecular-level studies for the structure and phase behavior of linear, branched, and crosslinked polymeric systems for engineering applications
Barbara	•	deposition and etching of electronic materials Fundamental molecular-level studies for the structure and phase behavior of linear, branched, and crosslinked polymeric systems for
Barbara University of Wisconsin–Madiso	n Juan J. de Pablo	deposition and etching of electronic materials Fundamental molecular-level studies for the structure and phase behavior of linear, branched, and crosslinked polymeric systems for engineering applications Polychalcogenide and main-group metal-ion speciation in
Barbara University of Wisconsin–Madiso Colorado State University Massachusetts Institute of	n Juan J. de Pablo Peter K. Dorhout Gregory C. Fu	deposition and etching of electronic materials Fundamental molecular-level studies for the structure and phase behavior of linear, branched, and crosslinked polymeric systems for engineering applications Polychalcogenide and main-group metal-ion speciation in solvatothermal synthesis Development of organometallic catalysts for stereoselective organic
Barbara University of Wisconsin–Madiso Colorado State University Massachusetts Institute of Technology	n Juan J. de Pablo Peter K. Dorhout Gregory C. Fu	deposition and etching of electronic materials Fundamental molecular-level studies for the structure and phase behavior of linear, branched, and crosslinked polymeric systems for engineering applications Polychalcogenide and main-group metal-ion speciation in solvatothermal synthesis Development of organometallic catalysts for stereoselective organic synthesis Scattering dynamics at complex surfaces with applications to
Barbara University of Wisconsin–Madiso Colorado State University Massachusetts Institute of Technology California Institute of Technolog	Peter K. Dorhout Gregory C. Fu V. Konstantinos P. Giapis	deposition and etching of electronic materials Fundamental molecular-level studies for the structure and phase behavior of linear, branched, and crosslinked polymeric systems for engineering applications Polychalcogenide and main-group metal-ion speciation in solvatothermal synthesis Development of organometallic catalysts for stereoselective organic synthesis Scattering dynamics at complex surfaces with applications to semiconductor etching and deposition
Barbara University of Wisconsin–Madiso Colorado State University Massachusetts Institute of Technology California Institute of Technolog University of Michigan	Peter K. Dorhout Gregory C. Fu Konstantinos P. Giapis Richard A. Goldstein	Fundamental molecular-level studies for the structure and phase behavior of linear, branched, and crosslinked polymeric systems for engineering applications Polychalcogenide and main-group metal-ion speciation in solvatothermal synthesis Development of organometallic catalysts for stereoselective organic synthesis Scattering dynamics at complex surfaces with applications to semiconductor etching and deposition Evolutionary perspectives on protein structure formation
Barbara University of Wisconsin–Madiso Colorado State University Massachusetts Institute of Technology California Institute of Technolog University of Michigan Yale University University of Illinois at Urbana-	Peter K. Dorhout Gregory C. Fu Konstantinos P. Giapis Richard A. Goldstein John F. Hartwig	deposition and etching of electronic materials Fundamental molecular-level studies for the structure and phase behavior of linear, branched, and crosslinked polymeric systems for engineering applications Polychalcogenide and main-group metal-ion speciation in solvatothermal synthesis Development of organometallic catalysts for stereoselective organic synthesis Scattering dynamics at complex surfaces with applications to semiconductor etching and deposition Evolutionary perspectives on protein structure formation Metal-mediated amine, ether, and borane production
Barbara University of Wisconsin–Madiso Colorado State University Massachusetts Institute of Technology California Institute of Technolog University of Michigan Yale University University of Illinois at Urbana-Champaign	Peter K. Dorhout Gregory C. Fu Konstantinos P. Giapis Richard A. Goldstein John F. Hartwig Nancy Makri	Fundamental molecular-level studies for the structure and phase behavior of linear, branched, and crosslinked polymeric systems for engineering applications Polychalcogenide and main-group metal-ion speciation in solvatothermal synthesis Development of organometallic catalysts for stereoselective organic synthesis Scattering dynamics at complex surfaces with applications to semiconductor etching and deposition Evolutionary perspectives on protein structure formation Metal-mediated amine, ether, and borane production Path-integral methods for condensed-phase quantum dynamics New synthesis methods and strategies for oligosaccharides and
Barbara University of Wisconsin–Madiso Colorado State University Massachusetts Institute of Technology California Institute of Technolog University of Michigan Yale University University of Illinois at Urbana-Champaign Northwestern University	Peter K. Dorhout Gregory C. Fu Wonstantinos P. Giapis Richard A. Goldstein John F. Hartwig Nancy Makri Frank E. McDonald Dale F. Mierke	Fundamental molecular-level studies for the structure and phase behavior of linear, branched, and crosslinked polymeric systems for engineering applications Polychalcogenide and main-group metal-ion speciation in solvatothermal synthesis Development of organometallic catalysts for stereoselective organic synthesis Scattering dynamics at complex surfaces with applications to semiconductor etching and deposition Evolutionary perspectives on protein structure formation Metal-mediated amine, ether, and borane production Path-integral methods for condensed-phase quantum dynamics New synthesis methods and strategies for oligosaccharides and polycyclic ethers Design, synthesis, and structural characterization of peptidomimetics
Barbara University of Wisconsin–Madiso Colorado State University Massachusetts Institute of Technology California Institute of Technolog University of Michigan Yale University University of Illinois at Urbana-Champaign Northwestern University Clark University	Peter K. Dorhout Gregory C. Fu Wonstantinos P. Giapis Richard A. Goldstein John F. Hartwig Nancy Makri Frank E. McDonald Dale F. Mierke	Fundamental molecular-level studies for the structure and phase behavior of linear, branched, and crosslinked polymeric systems for engineering applications Polychalcogenide and main-group metal-ion speciation in solvatothermal synthesis Development of organometallic catalysts for stereoselective organic synthesis Scattering dynamics at complex surfaces with applications to semiconductor etching and deposition Evolutionary perspectives on protein structure formation Metal-mediated amine, ether, and borane production Path-integral methods for condensed-phase quantum dynamics New synthesis methods and strategies for oligosaccharides and polycyclic ethers Design, synthesis, and structural characterization of peptidomimetics for drug design Development of solid-state NMR methods with applications for
Barbara University of Wisconsin–Madiso Colorado State University Massachusetts Institute of Technology California Institute of Technolog University of Michigan Yale University University of Illinois at Urbana-Champaign Northwestern University Clark University The Pennsylvania State University	Peter K. Dorhout Gregory C. Fu Wonstantinos P. Giapis Richard A. Goldstein John F. Hartwig Nancy Makri Frank E. McDonald Dale F. Mierke	deposition and etching of electronic materials Fundamental molecular-level studies for the structure and phase behavior of linear, branched, and crosslinked polymeric systems for engineering applications Polychalcogenide and main-group metal-ion speciation in solvatothermal synthesis Development of organometallic catalysts for stereoselective organic synthesis Scattering dynamics at complex surfaces with applications to semiconductor etching and deposition Evolutionary perspectives on protein structure formation Metal-mediated amine, ether, and borane production Path-integral methods for condensed-phase quantum dynamics New synthesis methods and strategies for oligosaccharides and polycyclic ethers Design, synthesis, and structural characterization of peptidomimetics for drug design Development of solid-state NMR methods with applications for polycrystalline, amorphous, and biomolecular solids
Barbara University of Wisconsin–Madiso Colorado State University Massachusetts Institute of Technology California Institute of Technolog University of Michigan Yale University University of Illinois at Urbana-Champaign Northwestern University Clark University The Pennsylvania State Universit Rensselaer Polytechnic Institute University of Massachusetts	Peter K. Dorhout Gregory C. Fu Wonstantinos P. Giapis Richard A. Goldstein John F. Hartwig Nancy Makri Frank E. McDonald Dale F. Mierke Wy Karl T. Mueller Todd M. Przybycien	deposition and etching of electronic materials Fundamental molecular-level studies for the structure and phase behavior of linear, branched, and crosslinked polymeric systems for engineering applications Polychalcogenide and main-group metal-ion speciation in solvatothermal synthesis Development of organometallic catalysts for stereoselective organic synthesis Scattering dynamics at complex surfaces with applications to semiconductor etching and deposition Evolutionary perspectives on protein structure formation Metal-mediated amine, ether, and borane production Path-integral methods for condensed-phase quantum dynamics New synthesis methods and strategies for oligosaccharides and polycyclic ethers Design, synthesis, and structural characterization of peptidomimetics for drug design Development of solid-state NMR methods with applications for polycrystalline, amorphous, and biomolecular solids Rational manipulation of protein aggregation behavior Model systems for flavoenzyme activity, recognition and catalysis in

<u>Institution</u> University of Pennsylvania	<u>Awarde</u> Michael J. Therien	<u>Project</u> The biomimetic chemistry of light harvesting, energy migration, and electron transfer: mechanism, theory, molecular design, and biomaterials
The University of Tennessee	Ziling (Ben) Xue	Synthetic and mechanistic organometallic chemistry in molecular approaches to advanced materials
	1	996
University of Rochester	Guillermo C. Bazan	Development of synthetic methodology based on transition-metal complexes for preparation of macromolecules with prespecified electronic properties or secondary structures
University of Wyoming	D. Scott Bohle	Mechanistic chemistry of peroxynitrite
University of Colorado Boulder	Christopher N. Bowman	Photopolymerization of multifunctional monomers: characterization of reaction diffusion kinetics, materials structure and properties
Duke University	Mark J. Burk	Design, development, and application of asymmetric catalytic processes
California Institute of Technology	Erick M. Carreira	Studies in asymmetric catalysis
University of California, San Diego	Robert E. Continetti	Energetics and dissociation dynamics of transient species and dynamics of elementary termolecular reactions
Indiana University	Andrew D. Ellington	Evolutionary engineering of metabolism: transfer of yeast lysine biosynthesis to bacteria and selective optimization of metabolic flux
University of Illinois at Chicago	Lucio Frydman	Development of new methods in NMR analysis and their application to chemical and biochemical studies
Stanford University	John H. Griffin	Molecular recognition and catalysis in naturally occurring and designed synthetic systems
University of Wisconsin-Madison	Laura L. Kiessling	Chemical approaches to structure/function relationships in protein- carbohydrate interactions
Northwestern University	Chad A. Mirkin	Self-assembled surface structures and redox-switchable electrocatalytic materials
University of Minnesota	Karin Musier-Forsyth	Biophysical approaches to study of RNA structure and function
University of California, Irvine	James S. Nowick	Protein structure, new catalyst creation, and drug delivery to intracellular targets
University of Pennsylvania	Norbert F. Scherer	Experimental chemical physics
University of Illinois at Urbana- Champaign	Jonathan V. Sweedler	Increased sensitivity of capillary zone electrophoresis by improving optical detection methods: fundamental studies of resolution and efficiency
University of California, Davis	Susan C. Tucker	Theoretical and computational studies of supercritical fluid solvent effects on chemical reaction rates
Massachusetts Institute of Technology	Jackie Y. Ying	Processing of mesoporous transition-metal oxide catalysis and permselective inorganic membranes
	1	995
University of Michigan	Gary D. Glick	New approaches to the study of structure-function relationships in biological macromolecules
University of Texas at Austin	Brent L. Iverson	Manipulation of recognition and catalysis in biological macromolecules
Wayne State University	Robert J. Levis	Chemistry in high coulombic fields: the nature of the surface chemical bond, and laser vaporization and femtosecond photoionization of DNA

Institution	<u>Awarde</u>	<u>Project</u>
Rutgers, The State University of New Jersey	Gaetano T. Montelione	Heteronuclear three-dimensional-NMR studies of protein-protein and protein-nucleic acid complexes
University of California, Irvine	Reginald M. Penner	Nanostructure-based investigations of metal surfaces by scanning tunneling microscopy
Yale University	Lynne Regan	Protein design as a tool to study structures and function
The University of Chicago	Lawrence R. Sita	Synthesis, characterization, and investigation of new classes of organic and organometallic oligomers and polymers in solution and at interfaces
University of Pennsylvania	Timothy M. Swager	Development of novel conducting polymers and liquid crystals
The University of North Carolina at Chapel Hill	H. Holden Thorp	Transition-metal redox reactions of biological significance
University of Minnesota	William B. Tolman	Bioinorganic and organometallic chemistry
Duke University	Eric J. Toone	Biocatalysis and protein-carbohydrate interactions
California Institute of Technology	Zhen-Gang Wang	Statistical mechanics of structures, phase transitions and dynamics of complex fluids
Massachusetts Institute of Technology	James R. Williamson	Structure and function of RNA and RNA-protein complexes
University of Pittsburgh	Peter Wipf	Total synthesis of natural products
University of Maryland, College Park	Sarah A. Woodson	Folding of catalytic RNA from thermophiles
New York University	John Z. H. Zhang	Time-dependent quantum dynamics study for chemical reactions
	1	994
University of Texas at Austin	Eric V. Anslyn	Development and use of combinatorial libraries for use in gene therapy
The University of Utah	Thomas P. Beebe, Jr.	Surface chemistry of DNA and other large molecules
California Institute of Technology	Pamela J. Bjorkman	Three-dimensional structural and functional studies of cell-surface proteins involved in the immune response
University of California, Berkeley	Arup K. Chakraborty	Quantum and statistical mechanical modeling of polymer-metal interfaces, zeolites, and complexation with macrocyclic ethers
The Ohio State University	James A. Cowan	Structural, mechanistic, and regulatory roles of metal cofactors in biological redox chemistry, nucleic acid biochemistry, and immunochemistry
Boston College	Amir H. Hoveyda	Catalytic and asymmetric transformations and their application to synthesis of medicinally important agents
Texas A&M University	Jeffery W. Kelly	Synthetic, physical organic, and spectroscopic approaches to evaluate the folding, structure, and function of b-sheet peptides and proteins

University of Southern California Chi H. Mak

Craig A. Merlic

Jeffrey S. Moore

Michael J. Sailor

Eric S. G. Shaqfeh

University of California, Los

University of California, San

Stanford University

University of Illinois at Urbana-

Angeles

Diego

Champaign

Theoretical understanding of quantum tunneling in condensed phase chemical and biological reactions

Discovery, development and application of organometallic chemistry for bioactive natural products synthesis and materials research

Molecular synthesis of porous crystals, liquid crystals, organic monolayers, and structure-controlled macromolecules

Investigation of fluid mechanics, non-linear transport phenomena, viscoelastic fluid instabilities, and reactive ion etching

Synthesis and study of materials with novel electrical and

photochemical properties

Institution	<u>Awarde</u>	Project
University of Colorado Boulder	Margaret A. Tolbert	Atmospheric chemistry: heterogeneous reactions on polar stratospheric clouds and sulfuric acid aerosols
Yale University	Patrick H. Vaccaro	State-selective preparation and characterization of energetic molecular species and studies of reaction dynamics and relaxation
University of Pennsylvania	Gregory A. Voth	Theoretical and computational studies of dynamical processes in condensed matter
Indiana University	Theodore S. Widlanski	Protein-DNA interactions: chemical methods for controlling and studying signal transduction